Air Ultrasonic Ceramic Transducers

Specification

<table>
<thead>
<tr>
<th></th>
<th>400ST160</th>
<th>400SR160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency</td>
<td>40.0±1.0Khz</td>
<td>40.0±1.0Khz</td>
</tr>
<tr>
<td>Bandwidth (-6dB)</td>
<td>2.0Khz</td>
<td>2.5Khz</td>
</tr>
</tbody>
</table>

Transmitting Sound Pressure Level
at 40.0Khz; 0dB re 0.0002µbar per 10Vrms at 30cm

Receiving Sensitivity
at 40.0Khz 0dB = 1 volt/µbar

Capacitance at 1Khz ±20%

Max. Driving Voltage (cont.) 20Vrms

Total Beam Angle -6dB 55° typical

Operation Temperature -40 to 85°C

Storage Temperature -40 to 85°C

All specification taken typical at 25°C
Closer frequency tolerance can be supplied upon request.

Models available:

1 400ST/R160 Aluminum Housing
2 400ST/R16B Black Al. Housing
2 400ST/R10P Plastic Housing
3 400ST/R16F Al. Housing w/Solid Grid
Air Ultrasonic Ceramic Transducers

400SR160 Receiver

Sensitivity Variation vs. Loaded Resistor

[Graph showing Sensitivity Variation vs. Loaded Resistor]

Center Frequency Shift vs. Loaded Resistor

[Graph showing Center Frequency Shift vs. Loaded Resistor]

Sensitivity Variation vs. Temperature

[Graph showing Sensitivity Variation vs. Temperature]

Center Frequency Shift vs. Temperature

[Graph showing Center Frequency Shift vs. Temperature]

400ST160 Transmitter

SPL Variation vs. Driving Voltage

[Graph showing SPL Variation vs. Driving Voltage]

Center Frequency Shift vs. Driving Voltage

[Graph showing Center Frequency Shift vs. Driving Voltage]

SPL Variation vs. Temperature

[Graph showing SPL Variation vs. Temperature]

Center Frequency Shift vs. Temperature

[Graph showing Center Frequency Shift vs. Temperature]