GENERAL PURPOSE AMPLIFIER ### Typical Applications - Broadband, Low Noise Gain Blocks - IF or RF Buffer Amplifiers - Driver Stage for Power Amplifiers - Final PA for Low Power Applications - Broadband Test Equipment ## **Product Description** The RF2334 is a general purpose, low-cost RF amplifier IC. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as an easily-cascadable 50Ω gain block. Applications include IF and RF amplification in wireless voice and data communication products operating in frequency bands up to 4000MHz. The device is self-contained with 50Ω input and output impedances and requires only two external DC biasing elements to operate as specified. The RF2334 is available in a very small industry-standard SOT23-5 surface mount package, enabling compact designs which conserve board space. GaN HEMT GalnP/HBT SiGe Bi-CMOS Functional Block Diagram Package Style: SOT23-5 ### **Features** - DC to 6000MHz Operation - Internally matched Input and Output - 16dB Small Signal Gain - 5dB Noise Figure - +18.5dBm Output Power - Single Positive Power Supply ### Ordering Information RF2334 General Purpose Amplifier RF2334 PCBA Fully Assembled Evaluation Board Tel (336) 664 1233 RF Micro Devices. Inc. 7628 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.rfmd.com Rev A6 020501 4-121 **Absolute Maximum Ratings** | | <u> </u> | | |-------------------------------|-------------|------| | Parameter | Rating | Unit | | Supply Current | 90 | mA | | Input RF Power | +13 | dBm | | Operating Ambient Temperature | -40 to +85 | °C | | Storage Temperature | -60 to +150 | °C | RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s). | Parameter | Specification | | Unit | Condition | | | |--------------------------|---------------|------------|------|-----------|---|--| | Farameter | Min. | Тур. | Max. | Ollit | Condition | | | Overall | | | | | T=25°C, I _{CC} =65mA | | | Frequency Range | | DC to 6000 | | MHz | | | | 3dB Bandwidth | | 2.5 | | GHz | | | | Gain | | 19.4 | | dB | Freq=100MHz | | | | | 18 | | dB | Freq=1000MHz | | | | | 16 | | dB | Freq=2000MHz | | | | | 14 | | dB | Freq=3000MHz | | | | | 13 | | | Freq=4000MHz | | | Gain Flatness | | ±2 | | dB | 100MHz to 2000MHz | | | Noise Figure | | 4.8 | | dB | Freq=2000MHz | | | Input VSWR | | 2.1:1 | | | In a 50Ω system, DC to $4000 MHz$ | | | Output VSWR | | 1.8:1 | | | In a 50Ω system, DC to $4000 MHz$ | | | Output IP ₃ | | +33 | | dBm | Freq=1000MHz±50kHz, P _{TONE} =-10dBm | | | Output P _{1dB} | | +18.5 | | dBm | Freq=1000MHz | | | Reverse Isolation | | 20.5 | | dB | Freq=2000MHz | | | Power Supply | | | | | With 22Ω bias resistor | | | Device Operating Voltage | | 4.8 | | V | At pin 5 with I _{CC} =65mA | | | Operating Current | | 65 | | mA | | | 4-122 Rev A6 020501 | Pin | Function | Description | Interface Schematic | |-----|----------|---|---------------------| | 1 | GND | Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. | | | 2 | GND | Same as pin 1. | | | 3 | RF IN | RF input pin. This pin is NOT internally DC-blocked. A DC-blocking capacitor, suitable for the frequency of operation, should be used in most applications. DC coupling of the input is not allowed, because this will override the internal feedback loop and cause temperature instability. | | | 4 | GND | Same as pin 1. | | | 5 | RF OUT | RF output and bias pin. Biasing is accomplished with an external series resistor and choke inductor to V_{CC} . The resistor is selected to set the DC current into this pin to a desired level. The resistor value is determined by the following equation: $R = \frac{(V_{SUPPLY} - V_{DEVICE})}{I_{CC}}$ Care should also be taken in the resistor selection to ensure that the current into the part never exceeds 90 mA over the planned operating temperature . This means that a resistor between the supply and this pin is always required, even if a supply near 4.9V is available, to provide DC feedback to prevent thermal runaway. Because DC is present on this pin, a DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. The supply side of the bias network should also be well bypassed. | RF INO | # **Evaluation Board Schematic** (Download Bill of Materials from www.rfmd.com.) Rev A6 020501 4-123 # **Evaluation Board Layout** Board Size 1.0" x 1.0" Board Thickness 0.020", Board Material R0-4003 Rogers Rev A6 020501 4-124 Rev A6 020501 4-125 16.00 15.00 # Reverse Isolation versus Frequency Across Temperature, I_{CC} = 65 mA 21.00 20 0.10 0.69 1.28 1.87 2.46 3.05 3.64 4.23 4.82 5.41 6.00 Frequency (GHz) # De-Embedded S22, V_{CC} = 4.84V, I_{CC} = 65mA, T = 25°C 4-126 Rev A6 020501